News

GRID VIEW

No more posts
Variables-independent-dependent.jpg


In science and medicine we measure if and how well things work using measurements. This idea may sound simple, but it’s often a challenge to find out exactly what to measure – and how. We typically measure things that can change – things that can vary. We call these things variables. Variables can be broadly split into two major categories: dependent and independent. Either type of variable can change, the difference is what changes them.

Independent variables are changed by researchers, particularly in clinical (patient) research. This variable in a medical research study is what we are testing. The changes to an independent variable may include dose, length, and method of drug delivery. We evaluate independent variables that may change outcomes of the people in a study – but sometimes they do not. In order to understand the effect of medicines, researchers test the medicine against a control. The control could be a placebo (something that has no effect) or a standard of care (the current normal medicine).

Dependent variables are what we expect to change during a trial. In a clinical research, we may expect changes in blood pressure, cholesterol levels, disease symptoms, mortality, and other categories. In a well designed study, we assess changes in the dependent variables related to changes in the independent variables. There is always the chance that the dependent variables are changed by other things, however. A patient might take a new blood pressure medicine but retire from their job. The reduced stress could decrease their blood pressure even if the medicine did not. 

Because of individual changes in people’s circumstances, researchers use statistics to find trends. If your blood pressure medicine was only studied on the one person above, you might have erroneous results. Instead clinical trials have dozens, hundreds, or even thousands of participants. With large populations these little differences get figured out. One person might retire, but another might get fired, having an opposite effect. Altogether, statistical analysis can help discover if any changes in the dependent variable are due to the effects of the independent ones.

Chart 1. Each amount of Rosuvastatin on the left corresponds to an amount of LDL on the right. The dependent variable (LDL levels) change in proportion to the amount of independent variable (rosuvastatin) taken by the patient.


Other variables exist in a study. The most concerning of these variables is known as a confounding variable. This is a variable that can undermine the study at a fundamental level. A confounding variable can be introduced by researchers and might include things like placing all overweight patients in the 10 mg group and all underweight people in the placebo group. ENCORE Research Group (and any legitimate clinical research group) avoids confounding variables and bias by randomizing patients. Patients are randomized through an impartial method (usually a computer program) which will randomly place patients into any of the test groups. By randomizing patients, we can avoid the most concerning confounding variables and make sure we are studying what we intend to!

To learn more about the clinical trial process, call our Recruitment Team at (904) 730-0166.

Written by Benton Lowey-Ball, BS Behavioral Neuroscience



Sources:

Schweiger, C. (2003). Clinical trials with rosuvastatin: efficacy and safety of its use. Italian Heart Journal: Official Journal of the Italian Federation of Cardiology, 4, 33S-46S. https://pubmed.ncbi.nlm.nih.gov/14983745/

Stewart, P. A. (1978). Independent and dependent variables of acid-base control. Respiration physiology, 33(1), 9-26. https://www.nlm.nih.gov/nichsr/stats_tutorial/section2/mod4_variables.html


Diet-and-Exercise-May-Not-Be-Able-to-Help-With-This-Inherited-Cardiovascular-Risk-Factor.jpg


If someone in your family had a heart attack or stroke before the age of 60, you could be at risk and might want to have your blood tested for this little-known hereditary risk factor, Lp(a). Cardiovascular disease remains the leading cause of death in the United States, even during the COVID-19 pandemic. Determining and reducing the risk factors for cardiovascular disease is critical. 

Lipoprotein(a), also called Lp(a), pronounced “LP Little a” is a particularly dangerous culprit.  Its levels are controlled by a single gene, and a single genetic variation in this gene is enough to drastically change Lp(a) levels. Unfortunately, since it is genetically determined, diet, exercise, and lifestyle have little or no effect on Lp(a) levels. High Lp(a) can contribute to several cardiovascular conditions. These include a two to three times increase in the risk of developing:

  • Coronary heart disease
  • Peripheral heart disease
  • Aortic valve stenosis
  • Ischemic stroke

Lp(a) has been referred to as the evil twin of the more familiar LDL (bad) cholesterol and is a triple threat because it is:

  1. Pro-atherogenic:  higher risk fatty deposits in the walls of arteries
  2. Pro-thrombotic:  promotes blood clots
  3. Pro-inflammatory:  inflammation is an important risk of cardiovascular disease

There are two methods of measuring Lp(a).  The most common method of measuring Lp(a) is by mass, in mg/dL. Measuring how many individual particles, regardless of size, is another method and is measured in nmol/L. It is important to know which method was used when understanding your numbers. If you have never had your Lp(a) level checked, we offer Lp(a) testing to our ENCORE community for those who pre-qualify (call for details). 

Currently, there are no approved therapies to lower Lp(a) levels and reduce one’s risk.  However, three exciting therapies are currently being studied in clinical trials at ENCORE Research Group sites across Florida. The good news is that because of clinical research and your involvement, we have new treatments for elevated Lp(a) on the horizon!

Written by Benton Lowey-Ball, BS Behavioral Neuroscience



Sources:

Kamstrup, P. R. (2021). Lipoprotein (a) and cardiovascular disease. Clinical chemistry, 67(1), 154-166. https://doi.org/10.1093/clinchem/hvaa247

Miksenas, H., Januzzi, J. L., & Natarajan, P. (2021). Lipoprotein (a) and cardiovascular diseases. JAMA, 326(4), 352-353. doi:10.1001/jama.2021.3632

Health.harvard.edu

Amgenscience.com


Heart-Disease-2020.jpg

In 2020 heart disease killed twice as many people as COVID-19 in the United States.1 Some may find this surprising due to the lack of news coverage on heart disease. Historically heart disease has always been one of America’s most serious epidemics.  It has been a leading cause of death since the turn of the 20th Century.  Following World War II, the National Heart, Lung and Blood Institute began a long-term study known as the Framingham study to identify the cause of heart disease.

The Framingham study is an enormous observational study in Framingham, Massachusetts.  Researchers conducted physical examinations on participants every two years to study contributing factors to heart disease and are now on their 3rd generation of participants.  The Framingham study identified many currently known risk factors, such as high blood pressure and high cholesterol.  Researchers began developing medications to combat cholesterol levels once high cholesterol was identified as a significant risk factor.

Some of our most exciting research at ENCORE Research Group is for new cholesterol-lowering medications such as Antisense Oligonucleotides (ASOs), Small Interfering RNA (siRNAs), and Adnectins.

Antisense oligonucleotides (ASOs) are short, synthetic single-stranded fragments of RNA that can reduce, restore, or modify protein expression. ASOs have been designed specifically to target high levels of LDL (bad cholesterol) in the bloodstream in a different way than current medications. They are also being studied to reduce lipoprotein a [Lp (a) or “Lp little a”] in patients with elevated levels by targeting a building block of the Lp(a).

Small interfering RNA (siRNAs) are another type of RNA therapy that is being used in clinical trials to reduce the risks of cardiovascular disease. Unlike ASOs which are single-stranded oligodeoxynucleotides, siRNAs are double-stranded RNA molecules. SiRNAs are used in the silencing of disease-causing genes for the treatment of atherosclerotic cardiovascular diseases.

Adnectins are a class of drugs used to target proteins. Adnectins can be rapidly developed to bind proteins or other necessary targets. Currently, adnectins are being used in clinical trials to bind with a human protein called PCSK9. This binding blocks the interactions between PCSK9 and LDL (bad cholesterol) receptors. As a result, the levels of LDL cholesterol in the body are lowered.

We are optimistic about these new technologies; they may give us the arsenal to fight back against heart disease.

If you have high cholesterol levels that are not being adequately managed by your current medications, we may be able to help you get involved in a research study that may help get you back on track!  As many of our readers know, most research studies offer access to cutting-edge therapies at no cost to patients. Call us to find out how you can get involved today!

[1] CDC, https://www.cdc.gov/nchs/products/databriefs/db427.htm


LPA-blog.jpg

5 Things to Know about Lp(a)

Lipoprotein(a), or Lp(a), is an independent risk factor for atherosclerotic cardiovascular disease. Cardiovascular disease is the leading cause of death in both men and women in the US and globally . You may have heard of LDL cholesterol, or “bad cholesterol,” as a risk factor for heart disease, but Lp(a) can be just as dangerous.  Lp(a) flies under the radar of many physicians. This is because the awareness of Lp(a) is still very low, very little is understood about the protein and the treatment options are limited. 

What is LP(a)?

Lp(a), pronounced “LP little a,”  is a protein that is attached to LDL cholesterol. It is composed of an LDL-like particle, but it has a second protein coiled around it. Recent studies have shown that people born with elevated Lp(a) can be two to four times as likely to have a heart attack or serious cardiac related risk. Lp(a) is present in 20% of the population. 

What differentiates LP(a) from other heart disease risk factors?

LP(a) is so unique because it is a completely genetic risk factor. Meaning, having an elevated LP(a) is almost entirely determined by the genes you inherit. There is no evidence that a healthy lifestyle will lower your Lp(a). However, that does not mean those with high levels shouldn’t practice healthy habits. Reducing other risk factors that are determined by quality of health can still reduce the overall risk of heart disease.

Another risk factor that sets LP(a) apart is that it is an independent risk factor. It has been linked to heart disease in younger adults who are otherwise healthy and have no prior cardiovascular risks. Elevated LP(a) has affected the lives of many who are otherwise healthy. For example, Tennis legend Arthur Ashe, who had his first heart attack at age 36. Bob Harper, a celebrity fitness trainer was also affected and nearly died of a heart attack at age 52.

Who should be tested for Lp(a)?

Studies show that there is a higher risk of a cardiovascular event if Lp(a) levels start to rise above 30 mg/dl. There is an even greater risk at levels 50 mg/dl and higher. There are an estimated one in seven people at or above this threshold. If you’ve had a cardiac event but your cholesterol levels are normal, or you have a family member with heart disease at an early age, have a cardiovascular event despite normal lipid levels, have a family history of Lp(a), or have aortic valvular disease at an early age  then you should get tested for Lp(a).

As mentioned, Lp(a) is a genetically mediated risk factor. “This means it runs in families,” Albert Lopez, MD, DO, FASPC, internal physician and lipid specialist in Jacksonville, FL says. “Those individuals that have it, you have a 50% chance of giving to your children.” Dr. Lopez believes there should be cascade screening, meaning asking family members if they have it and then getting tested.

No FDA approved remedies for Lp(a)

Currently there are no FDA approved remedies for elevated Lp(a). Statins, a widely known and used therapy that lowers LDL cholesterol does not reduce Lp(a) and has been shown to sometimes result in a slight increase. One therapy that has been shown to work is asphersis. This process filters a patient’s blood by circulating it through a machine and removing Lp(a) particles. However, this process is reserved for high-risk patients because it is extremely expensive, requires weekly visits and involves risks. After stopping apheresis, the Lp(a) levels begin to rise again.

New Advancements in Science regarding Lp(a)

Luckily, there are new drugs on the horizon that could potentially help those suffering from elevated Lp(a) levels. “What is exciting is that we are in totally nerd, sci-fi treatments now,” Dr. Lopez says. “We can actually stop your genes from making this protein by using a little snip that crinkles it up and doesnt let it read.” In other words, new studies are using gene silencing techniques to achieve a large and durable reduction of Lp(a). 

These therapies and medicines are still in clinical trials now. ENCORE Research group is conducting research studies for people with elevated Lp(a) in hopes to find a drug that will lower Lp(a) levels. It is up to the public to participate in these research studies to help those suffering from elevated Lp(a) levels.


cholesterol-heart-2.jpg

December 7, 2020 CardiovascularCholesterol

For some patients, managing cholesterol creates a challenge. Statins are a safe and standard treatment but many people have very high levels of cholesterol that require more than statin drugs alone.  Others cannot easily tolerate statins.  Nonetheless, treating cholesterol saves lives and avoids heart attacks and strokes.

Thankfully, the future is here with new breakthroughs that can change the way we maintain healthy cholesterol levels due to continued research and clinical trial participants. We outline some of these exciting technologies below.

Antisense oligonucleotides (ASOs) are short, synthetic single stranded fragments of RNA that can reduce, restore or modify protein expression. ASOs have been designed specifically to target high levels of LDL (bad cholesterol) in the bloodstream in a different way than current medications. Firstly, ASOs targets the source of the disease resulting in a higher chance of success compared to therapies targeting downstream pathways. Secondly, ASOs are not metabolized by cytochrome P450 as most other drugs are. This significantly reduces the chance of one drug interacting with another drug in the body which could potentially cause more harm than good.

Small interfering RNA (SiRNAs) are another type of RNA therapy that is being used in clinical trials to reduce the risks of cardiovascular disease. Unlike ASOs which are single-stranded oligodeoxynucleotides, siRNAs are double-stranded RNA molecules. SiRNAs are used in the silencing of disease-causing genes, in this case the genes involved in creating cardiovascular diseases, and it has made great progress. 

Adnectins are a class of drugs used to target proteins. Adnectins can be rapidly developed to bind proteins or other necessary targets. Currently, adnectins are being used in clinical trials to bind with a human protein called PCSK9. This binding blocks the interactions between PCSK9 and LDL (bad cholesterol) receptors. As a result, the levels of LDL cholesterol in the body are lowered.

These technologies hold the potential to not only better manage cholesterol levels and thereby reducing heart attack and stroke risk, but many other conditions as well.

Source:

US National Library of Medicine
National Institutes of Health


Blood-fat-triglycerides-cholesterol.jpg

What Are Triglycerides?

Triglycerides are a type of fat (lipid) found in your blood.  You get them in two ways – from the food you eat and from what your liver makes.  Eating too many calories, especially from high carbohydrate foods, could lead to high triglycerides (hypertriglyceridemia), as could certain medications.  High triglycerides could also be a sign of diabetes or thyroid problems, or be genetic.

Almost 1 in 3 Americans have high triglycerides.  When you have excess triglycerides, they are stored in the fat cells for later use.  When they are needed, your body releases them as fatty acids, which fuel body movement, create heat, and provide energy for the body processes.

A fasting blood test can tell where your triglyceride level falls.  For good health, your triglyceride level should be less than 150 mg/dL.  Borderline high levels are 150-199 mg/dL.  High is 200-499 mg/dL.   Very high is more than 500 mg/dL

Diet and Lifestyle Changes to reduce High Triglycerides

Consume less sugar and refined carbohydrates – limit white breads, white rice, white potatoes, sweetened beverages, sugary cereals, cakes and cookies.  Instead choose whole grain breads, quinoa or wild rice, and fresh fruits and vegetables. Aim for 30 grams of fiber a day.

Choose Healthy fats – use unsaturated fats such as olive and avocado oils.  Eat fish, poultry, less red meat, and enjoy some meatless meals.

Limit your intake of alcohol – for some people drinking even a little bit can have a big effect on triglycerides.

One of the best ways to lower triglycerides is with regular exercise.  Aim for an average of 40 minutes of moderate to high intensity exercise on 3 to 4 days a week.  Taking a brisk walk every day works for many people.

When Healthy Lifestyle Changes Are Not Enough

Your doctor may recommend medication to help lower your high triglycerides, such as nicotinic acid (niacin), fibrates, omega-3-fatty acids (fish oil) or statins.  There are also some new medications being developed that may not only lower your triglycerides, but reduce your risk of heart disease overall.  Many of our research sites are participating in these important clinical trials.  We invite you to contact one of our sites near you to see if you could benefit from one of these programs.

Lori Alexander, MSHS, RDN, CCRC, CLS, FNLA

Director, ENCORE Lipid Center of Excellence


Cholesterol-5.jpg

December 11, 2019 BlogCholesterol

 

Cholesterol has earned a bad reputation over the years. However, it is required by every part of your body for day to day functions. In fact, cholesterol is so important to daily function, that every cell in the body can make cholesterol from basic materials, except your eyelashes! So how do you reconcile these two completely different ideas? The cholesterol that circulates in your blood stream is the extra stuff that your body is trying to get rid of. This extra cholesterol is what can cause damage to arteries, heart disease, and increase your risk for stroke.

So, what is cholesterol? It is a type of waxy, fat-like substance, also called a lipid.  Since cholesterol is a fat, it can’t travel alone in the bloodstream. It would end up as useless globs (imagine bacon fat floating in a pot of water). To get around this problem, the body packages cholesterol and other lipids into minuscule protein-covered particles that mix easily with blood. These tiny particles, called lipoproteins (lipid plus protein), move cholesterol and other fats throughout the body.1

LDL (low-density lipoprotein) is considered the “bad”, unhealthy cholesterol that can build up in the arteries and form deposits called plaques.

HDL (high-density lipoprotein) is the “good”, healthy kind of cholesterol that transports excess LDL cholesterol to the liver to be removed from the body.

PCSK9 is a protein in our body that regulates the circulating levels of LDL “bad” cholesterol.  Decreasing the PCSK9 proteins in the body will reduce LDL levels and reduce the risk of heart attack and stroke.

There are currently two FDA approved medications that have been very successful in blocking the PCSK9 protein once it has been made.  They are Repatha and Praluent.  However, the medications are expensive and not approved for all patients under their insurance.

Scientists believe it would be even more powerful to prevent the PCSK9 protein from being made in the first place. Currently being studied are a new class of molecules called antisense oligonucleotides (ASO).  ASOs are pieces of DNA that short-circuit the production of PCSK9, resulting in reduced LDL levels and associated risks.

When you participate in a clinical research study, you gain access to these types of cutting-edge therapies at no cost and before the general population. Contact us to schedule a free consultation to see if you qualify for one of our clinical research studies. If you qualify for one of our clinical trials, your health will be closely monitored by our team of expert medical professionals throughout the trial.

 

Reference:

  1. https://www.health.harvard.edu/heart-health/how-its-made-cholesterol-production-in-your-body

 


cholesterol-3.jpg

June 11, 2019 BlogCholesterol

You may know that having normal cholesterol levels in your blood are important for helping prevent heart attacks and strokes.  But you may not know that there is another factor in your blood work that can be just as important!  It’s a blood test you can request, and the result will tell you if it’s important for you.

 

Lipoprotein(a) is a particle in your blood which carries cholesterol, fats, and proteins. The amount your body makes is inherited and determined by the time you are born.  It does not change very much during your life and is not affected by diet or exercise.

 

Lipoprotein(a) is also known as Lp(a), L-p-a, Lipoprotein-little-a, and L-p-little-a.  Some cholesterol and Lp(a) in your blood is normal.  A high level of LDL, the bad cholesterol, increases your risk for heart attack or stroke. High levels of Lp(a) also increase your risk, even if your cholesterol numbers are normal!  About 20 percent of people, or 1 in 5, have high levels of Lp(a). This blood test is not done as part of your usual blood testing but can be requested.

 

Here are some reasons an Lp(a) blood test may be important for you: 

  •  Having high levels of LDL, even while taking medicine to treat it.
  • You or a family member have had a heart attack or stroke at an early age, men younger than 55 years old and women less than 65 years old.
  • You or a family member developed high blood pressure at an early age.
  • A family member has high Lp(a). If an adult has high Lp(a), their children have a 1 in 2 chance of inheriting it.
  • Having FH, Familial Hypercholesterolemia, an inherited condition of very high cholesterol levels.

 

Get tested, ask your nurse or doctor if you have questions.

  • Join a clinical trial.  Jacksonville Center for Clinical Research currently has an enrolling study, call 904-730-0166 for more information. If you are eligible for this study, Lp(a) testing is provided at no cost to you.
  • Ask your Doctor to order the lab test. Several labs perform it:
    • Cleveland Heart Lab / Quest
    • HDL labs
    • Boston Heart Diagnostics

 

Be aware of your personal risks.

Reach healthy goals for your cholesterol results with dietary choices, exercise, and medication if needed.

Stay healthy, stay active, exercise, eat naturally, have fun, love, laugh!

 

Written by: Julia Baker, RN, adapted from a presentation by Albert Lopez, MD


cholesterol-2.jpg

November 1, 2017 BlogCholesterol

Heart disease currently accounts for 1 in 4 deaths in the United States.[1] However due to new research breakthroughs there are now treatments available that may finally give us the means to fight back against heart disease.  Historically heart disease has always been one of America’s most serious epidemics.  It has been a leading cause of death since the turn of the 20th Century.  Following World War II the National Heart, Lung and Blood Institute began a long term study known as the Framingham study to identify the cause of heart disease.

The Framingham study is an enormous observational study in the town of Framingham, Massachusetts.  Researchers conducted physical examinations on participants every two years to study contributing factors to heart disease and are now on their 3rd generation of participants.  The Framingham study identified many of the currently known risk factors such as high blood pressure and high cholesterol.  Once high cholesterol was identified as a major risk factor, researchers began developing medications to combat cholesterol levels.  Some of our most exciting research at Encore Research Group is for these new cholesterol lowering medications such as PCSK9 inhibitors.

PCSK9 inhibitors are an amazing class of drugs that allow us to lower LDL or “bad cholesterol” to previously unachievable levels.  These drugs are usually injectable and have many advantages over traditional statin drugs.  One such advantage is we are not seeing the muscle cramping associated with statin therapy. This is truly a breakthrough.

How low is too low? It is a question that researchers are actively addressing.  So far we have not seen complications or health risks as a result of very low LDL.  Some large studies that Encore Research has participated in will be releasing their results within the next year to more definitively answer this question. For now, there are many patients that have cholesterol levels that are difficult to budge but may respond to these new therapies.

Currently we are studying the effects of PCSK9 drugs in high risk populations such as diabetics. If you have high cholesterol levels that are not being adequately managed by your current medications, we may be able to help you get involved in a research study that may help get you back on track!  As many of our readers know, most research studies offer access to medication at no cost to patients. Call us to find out how you can get involved today!

[1] CDC, NCHS. Underlying Cause of Death 1999-2013 on CDC WONDER Online Database, released 2015. Data are from the Multiple Cause of Death Files, 1999-2013, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. Accessed Feb. 3, 2015.


statin-intolerant.jpg

If you have high cholesterol you may dread going to your doctor, especially if they are going to complete a cholesterol blood test. You know they prescribed a statin, but the muscle cramping you experience after taking it just isn’t worth it. How do you tell your doctor that the medication they prescribed just isn’t working for you? You are not alone, and there are options available for you.

 

We all know that having excess cholesterol in our blood is a bad thing, but why is it so bad? High cholesterol has often been called ‘The Silent Killer’. In fact, according to the CDC heart disease is responsible for 1 in 4 American deaths every year.[1] High cholesterol is known to cause plaque formation in arteries, constricting blood flow to vital organs in your body. Even worse, cholesterol plaques can become dislodged from the walls of the arteries potentially causing blood clots. Both heart attacks and strokes can be caused by plaques reaching the heart or brain respectively. If lifestyle changes such as a good diet and exercise can’t bring down your cholesterol numbers, you may need a medication. The most common cholesterol lowering medications to date are statins such as Crestor, Lipitor, or Zocor.  These medicines have been life saving for many people that can tolerate them. However, some people are intolerant to statins and will experience side effects such as painful muscle cramps, inflammation and more.

 

If you are allergic to or can’t handle statins what can you do? It is crucial to keep your cholesterol levels down, lowering your risk for a heart attack and stroke. You may try one of the medications already on the market for people with statin intolerance such as Zetia, Juxtapid and Repatha. However, each of these drugs have their own risks. Zetia can cause symptoms similar to those caused by statins. Juxtapid, a newer medication, has been found to significantly reduce LDL bad cholesterol by 40-50%.  Sadly, it also caused diarrhea, nausea, vomiting or abdominal pain in 28% of patients.[2] In 2015 the FDA approved Repatha, a new class of drug called a PCSK9 inhibitor that is very successful in lowering LDL.  Unfortunately, due to the cost of development and production the annual cost is around $14,000 dollars making it unaffordable for most people.

 

If you’ve had trouble taking statins in the past you may be asking “what do I do now”? Many of our participants are looking for alternative treatments or want to be part of cutting edge research. I encourage you to check out the cholesterol research studies we are conducting at many of our research centers. You may qualify for a new oral medication or to receive PCSK9 in an upcoming study! The medicines being researched for people who cannot take statins may significantly alter the future of cardiovascular disease.  We need your help to bring these new medications to market!

 

References:

[1] “Heart Disease Fact Sheet.” Centers for Disease Control and Prevention. Centers for Disease Control and Prevention, 16 June 2016. Web. 27 Apr. 2017.

[2] Orrange, Sharon, MD. “Finally, a Non-Statin Cholesterol Medication That Works: Introducing Juxtapid.” The GoodRx Prescription Savings Blog. N.p., 06 June 2014. Web. 27 Apr. 2017.

 


Lori-Alexander.jpg

January 1, 2016 BlogCholesterol

Familial Chylomicronemia Syndrome (FCS) is a rare genetic disorder characterized by the build-up of chylomicrons, which are rich in triglycerides, a type of fat in your blood.  The human body naturally produces an enzyme to eliminate the chylomicrons called lipoprotein lipase (LPL). However, people with FCS either do not have the LPL enzyme or it does not function properly.  Due to the buildup of chylomicrons and very high triglycerides, they live at risk of severe recurrent abdominal pain and potentially fatal pancreatitis, as well as decreased quality of life in many areas.

To this day, there is no treatment for FCS; the current medications used for lowering triglyceride levels do not work for people with FCS since they are designed to work on the LPL enzyme.  Currently, the only option is to follow an ultra-low or no fat diet, which is very difficult to maintain long term.  People with FCS also must avoid alcohol, sweets, and simple carbohydrates due to their effect on raising triglycerides.

Lori Alexander is Director of the Lipid Center of Excellence at Jacksonville Center for Clinical Research. She is a Registered Dietitian Nutritionist and board member of the National Lipid Association (NLA) and the Foundation of the National Lipid Association. Lori has been coordinating clinical trials with Akcea, one involving a new potential treatment for people with FCS called volanesorsen (Waylivra).

Recently, Lori was asked to testify on behalf of people with FCS. On May 10, 2018 she traveled to the Food and Drug Administration (FDA) Headquarters in Bethesda, MD to testify in front of FDA Endocrinologic and Metabolic Drugs Advisory Committee. She was accompanied by Akcea scientists who shared clinical trial data, and some people diagnosed with FCS who got to share their stories, some of whom saw great relief from volanesorsen during the clinical trials. During her testimony she encouraged the approval of volanesorsen (Waylivra), “Treatment with volanesorsen offers hope to these people, many who have been struggling for years without medical therapy”. 1

After hearing from the Akcea scientists, the people with FCS and Lori’s testimony, the advisory committee voted 12-8 in favor of recommending volanesorsen’s approval to the FDA! The FDA has set a date for the completion of its review on August 30, 2018. 2

 

References:

  1. https://www.lipid.org/nla/alexander-testifies-front-fda-advisory-committee-behalf-fcs-patients
  1. http://www.raredr.com/news/fda-votes-in-favor-of-fcs-drug

Photo Credit: National Lipid Association


Encore logo

As a proven clinical research organization, we take every precaution to assure the safety of and maximize the value for our research volunteers. Qualified doctors, nurses and study coordinators on staff provide support and care throughout the research trial. Participation is always voluntary. We appreciate the time and effort that research volunteers bring to this important process.

Copyright 2021 ENCORE Research Group